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The momentum equation can be used to derive the expression for-+

shear stress: _
7, = JRS;

y = specific weight of water (62.4 Ibs/ft3)
R = hydraulic radius (ft)
Sf = hydraulic slope (ft/ft) (slope of the energy grade line, or the friction slope)

Chin 2006; Figure 3.2

Manning Coefficients for Open Channels (Table 4.1, Chin 2000)

Material n

Sl units (m/s; m)
Lined channels:

1 y Asphalt 0.013-0.017
V —— R 3 S % Brick 0.012-0.018
f Concrete 0.011-0.020
n Rubble or riprap 0.020-0.035

Vegetal 0.030-0.40

U.S. Customary units (ft/sec; ft)  Excavated or dredged channels:

Earth, straight and uniform 0.020-0.030
1 486 y }/ Earth, winding, fairly uniform 0.025-0.040
V=""""R"3§.72 Rock 0.030-0.045

n f Unmaintained 0.050-0.14

Natural channels*:

Fairly regular section 0.03-0.07

Where Sf is the slope of the Irregular section with pools 0.04-0.10
energy grade line (friction Source: ASCE (1982). Reproduced by permission of the American Soci-

slope). If the channel slope is ety of Civil Engineers.

used. then Implles uniform *Minor streams, top width at flood stage less than 31 m.
’

flow, which is rare.

Only valid for hydraulically rough flow, when: n® RSf >1.9x107" (Sl units)




Manning’s Equation

Example:

» Determine the flow rate in a rectangular concrete channel
with a width of 3 m and a HGL slope of 0.001 m/m when
the depth of flow is 1.5 m. Assume n = 0.014.

im
15m

Given: n =0.014 (concrete channel)
L =3 m (width of channel)
w =1.5m (depth of flow)
s¢=0.001 m/m

Manning’s Equation

» Use the Manning's equation:
A _»2
Q="Rr%s %
n

Need A (cross-sectional area of flow):
A=Lw
Substituting:
A=(3m)1.5m)
A=45m?

Manning’s Equation

* Need R (hydraulic radius):
R =A/P
* Need P, the wetted perimeter (noted on drawing by
thicker lines).
P=L+2w
Substituting:
P=@m)+2(1.5m)
P=6m
Substituting into equation for hydraulic radius:
R =A/P
R = (4.5 m2)/(6 m)
R=0.75m

Manning’s Equation

 Substituting into Manning's equation:

0- (4.5m?)(0.75m)*’*(0.001m/ m)*'?

0.014
Q =8.39m*/sec




Manning’s Equation

Example:

» Given a V-shaped channel with a HGL slope of 0.001, a
top width of 10 feet, and a depth of 5 feet, determine the
velocity of flow using the Manning’s equation. Find the
discharge in both ft¥/sec (cfs) and m3/sec (cms).

% 104

S5t

Manning’s Equation

Substituting:
R = (25 ft2)/14.14 ft
R=1.77ft

Assume that the channel is concrete-lined with a
Manning’s n of 0.015.

1'49 2/3c1/2
_ 149 pRersg
Q n
Q- S'T“li(zs #2)(1.77 ft)2/*(0.001)2
Q = 114.9 cfs = 115 ft3/sec(0.3048 m/ft)3 = 32.5

m3/sec

Manning’s Equation

Example:

» Find the dimensions of a rectangular concrete channel to
carry a flow of 150 m3/sec, with a HGL slope of 0.015 and
a mean velocity of 10.2 m/sec.

width

depth of

flow

Given:
Q = 150 md/sec
V =10.2 m/sec
S;=0.015
Assume: Manning’s n = 0.013 (concrete channel)

Manning’s Equation

* Have everything needed to solve Manning’s
equation for the hydraulic radius, R:

i :1R2/351/z
n
Vn
R¥® = XE

R :( \/1?2)3/2
S

_((10.2m/sec)(0.013)""
(0.015)"?

R=1.13m




Manning’s Equation
By definition, R = cross-sectional area of flow/wetted perimeter

A = (Base of channel)(Depth of flow)

P = (Base of channel) + 2(Depth of flow)
Substituting :

R (Base)(Depth) 1

= =1.13m
[Base + 2 Depth]

By the Continuity Equation:
A= 8 = (Base)(Depth)
_150m°/sec

~10.2m/sec
A=14.7m? = (Base)(Depth)

Manning’s Equation

* Have two equations and two unknowns:
14.7m? = (Base)(Depth)

14.7
ase =
Depth
2
113me_ A4Tm.
Base + 2Depth

Base + 2Depth =13.0m

14.7 +2Depth=13.0
Depth

14.7 + 2Depth? =13Depth
2Depth® -13Depth+14.7 =0

Two possible solutions to quadratic (both are correct):
Base =2.9m Depth of Flow = 5.04 m
Base =10.1m Depth of Flow = 1.46 m

Figure 5-8 (Chow 1959) can be used to significantly shorten the
calculation effort for the design of channels. This figure is used to
calculate the normal depth (y) of a channel based on the channel
side slopes and known flow and channel characteristics, using
the Manning’s equation in the following form:

__Q
1.495°°

wnN

AR

Initial channel characteristics that must be know include: z (the side
slope), and b (the channel bottom width, assuming a trapezoid). It is
easy to examine several different channel options (z and b) by
calculating the normal depth (y) for a given peak discharge rate,
channel slope, and roughness. The most practical channel can then be
selected from the alternatives.




Composite Manning’s n Estimate, Example 3.2 (Chin 2006)

A floodplain (next slide) can be divided into seven sections as shown
below. Use the various formula in the table to estimate the composite

roughness value for this channel.

Formula Reference
N p I\
"= (Lf':j\%— Horton (1933}, Einstein (1934)"
it P
Section n ‘ 12
(ztlpf"‘:} Muhlhofer (1933}, Einstein and Banks (1951)
N = - 15 uhlholer 5 , EInsten an nks
1. | 0.040 (zhn)
2 0.030 -
3 0.015 ne= T Loter (1933)!
- ;
4 0.013 X =5
017 N M
: g 2;5 Inme = % Krishnamurthy and Christensen (1972)°
. it Piri
7 0.060 *Fornvula assanses that the mean flow in sach of the subarcas is equal 1o the mean Nlow vebosity,
tp and R are the perimeter and hydraulic radius of the entire cross-section, respectively,

By, i the average ove depih in Section i,

Floodplain showing seven separate sections corresponding to

different values of n.

|-——~100m—>| ‘ 150 m ‘
‘ = 7] p-
I
N

Figure 3.5, Chin 2006

Each section has the following geometric characteristics:

P; Aj R; Yi
Section, i (m) (m2) (m) n; {m)
1 8.25 8.00 0.97 0.040 1.00
2 100 200 2.00 0.030 2.00
3 6.71 21 3.3 0.015 3.50
4 15.0 75 5.00 0.013 5.00
5 6.71 21 313 0.017 3.50
6 150 300 2.00 0.035 2.00
7 8.25 8.00 0.97 0.060 1.00
295 633

These values are used with the prior equations to result in the

following estimates for Manning’s n:

Formula ne
Horton/Einstein 0.033
Muhlhofer/Einstein and Banks 0.033
Lotter 0.022
Krishnamurthy and Christensen | 0.026

The estimates of the composite n values can vary considerably,
resulting in similar differences in predicted discharges.




As shown earlier, the Manning’s equation can
also be also used to predict flows in pipes.
Drainage systems are typically designed as
open channel flows in circular pipes, although
other cross-sectional shapes are used.

Charts or tables can be used to help predict the
flow conditions in these systems when the
pipes are not flowing full.

Sewers Flowing Partly Full

Values of m’,,rn“
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Figure 2-16 Hydraulic elements for circular sewers [10).

Sewers Flowing Partly Full

Table 2-5 Values of K’ for circular channels in terms of diameter in the equation”

Q = (K'[m)D*35"12

v

0.00 0.01 0.02 0.03
D

0.04 0.05 0.06 0.07 0.08 0.0

00 ...
0.1 0.00651 0.00795 0.00953  0.0113
0.2 0.0273 0.0301 0.0331 0.0362
0.3 0.0610  0.0650 0.0691 0.0733
0.4  0.1050  0.1099 0.1148  0.1197
0.5 0.15 0.161 0.166 0.172

0.6 0.209 0.215 0.220 0.225

0.7 0.261 0.266 0.271 0.275

0.8 0.305 0.308 0.312 0.315

0.9 07332 0.334 0.335 0.335

1.0 0312

0000047 0.00021 0.00050 0.00093 0.00150 0.00221 0.00306 0.00407 0.00521

0.0131 00152 0.0173  0.01%  0.0220 0.0246
0.0394  0.0427 0.046]1  0.0497 00534  0.0572
0.0776  0.0820 0.0864 0.0910 0.0956  0.1003
01248 0.1298  0.1349  0.1400 0.1453  0.1506
0.177 0183 0.188 0.193 0.199 0.204
0.231 0.236 0.241 0.246 0.251 0.256
0.280 0.284 0.289 0.293 0.297 0.3
0.318 0.321 0.324 0.326 0.329 0.331
0.335 0.335 0.334 0.332 0.32% 0.325

*Adapted from Ref. 2,
where = flowrate, m%/s
n = Manning coefficient of friction
D = diameter of conduit
8§ = slope of energy grade line, m/m.
*d = depth of flow
Note: m*'s x 35,3147 = ft’/s
m x 32808 = fi

From: Metcalf and Eddy, Inc. and George
Tchobanoglous. Wastewater Engineering:
Collection and Pumping of Wastewater.
McGraw-Hill, Inc. 1981.

Example:

Sewers Flowing Partly Full

* Determine the depth of flow and velocity in a sewer
with a diameter of 300 mm having a HGL slope of
0.005 m/m with an n value of 0.015 when
discharging 0.01 m3/sec.

Given:

D =300 mm
S;=0.005 m/m
n=0.015

Q =0.01 m3/sec




Sewers Flowing Partly Full

» Use the modified Manning’s equation for
partly full sewers:

K"\ Nerseur2
=|— |D*°S
o-(7)

Rearranging :

K= g
Substituting :
_ (0.015)(0.01m?/sec)
(0.3m)*3(0.005m/m)*'2
K'=0.0526

Sewers Flowing Partly Full

» Using Table 2-5 (equation in terms of
diameter of pipe):
Close to K’ = 0.0534
Therefore, d/D = 0.28

. Substituting:
d/(0.3 m)=0.28
Depth of flow, d = 0.084 m

Sewers Flowing Partly Full

» To calculate velocity at depth of water of
84 mm, need to use continuity equation:

Q=VA

» Using Manning'’s partial flow diagram
(assuming a constant n):

Atd/D =0.28

Sewers Flowing Partly Full
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Figure 2-16 Hydraulic elements for circular sewers [10].
From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering:
Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981.




Sewers Flowing Partly Full Sewers Flowing Partly Full

» Using Manning’s partial flow diagram * Substituting: A =0.2 - A ;
(assuming a constant n): A 0.0707m
At d/D = 0.28, A/A;,, = 0.22 A=0.0156m*

- Calculate Ay » Substituting into the continuity equation:

A = (EJDZ = (Zj(o-?’m)z Q=VA
4 4 0.01m*/sec =V (0.0156m?)
Ay =0.0707m? V =0.641m/sec

In-Class Problem (Partially
Flowing Sewer)

» Determine the depth of flow and velocity in a
sewer with a diameter of 600 mm having a HGL
slope of 0.005 m/m with an n value of 0.013
when discharging 0.055 m3/sec.




Remember the problem having two “correct” answers:

I S

] Y VIZ/zg ——r - —9
H, l H
and ﬂ._ Jr Hy P2
Hy, :
i
/ Az

Figure 7-7 Transition in an open channel.

The specific energy diagram is used to determine the most likely water depth.

Prasuhn 1987

When the water depth is close to

Typical Specific Energy Diagram critical, small changes in specific
energy results in large depth

(F|gure 3.6, Chin 2006) changes, resulting in unstable
vV 2 and excessive wave action. Fr

r E= V+a r / should be <0.86 or >1.13 to
2 7

prevent this.

N

If water depth is deeper than the
critical depth (y,), then the flow is
subcritical.

If the water depth is shallower than
the critical depth, then the flow is
supercritical.

Depth of flow, ¥

oS

T

I

I

I

{

I\

N

;

Q = constant

Specific energy, E

g = constant

In the subcritical zone, the
water depth component is
much larger than the velocity
head

5’3 ******* ——

s
7
Pl 7/_ -
¥ e
A VJ1 [2g In the superecritical
. / zone, the velocity head
Yap—— —— —— —— in  component is much

larger than the water
depth.

-

V2 QZ
HO =y+:_.q;’—y+ j-gL]_I

Figure 7-8 Specific energy diagram.
Prasuhn 1987
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In this example, the upstream flow is subcritical (deeper than the critical
depth). When the water approaches an upward step, the specific energy
calculation results in two possible water depth solutions. The correct
downstream water depth solution is on the same limb of the specific energy
diagram as the upstream water depth. In this case, the flow is still subcritical,
although the water depth actually decreases (but it cannot pass through the
critical depth value).

Hy

(a) Specific energy diagram (b) Water surface profile

Figure 7-9 Subcritical transition with upward step.

Prasuhn 1987

In this example, the upstream flow is supercritical (shallower than the critical
depth). When the water approaches an upward step, the specific energy
calculation results in two possible water depth solutions. The correct
downstream water depth solution is on the same limb of the specific energy
diagram as the upstream water depth. In this case, the flow is still
supercritical: the water depth increases (but it cannot pass through the
cr‘:itical depth value).

V
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(a) Specific energy diagram (b) Water surface profile

Figure 7-10 Supercritical transition with upward step.

Prasuhn 1987

In arectangular channel, the critical depth can be easily calculated
using a unit width flow rate:

g=— Where b is the width of the rectangular channel

The critical flow depth can then be calculated as:

Ve =|
g

and the minimum specific energy in a rectangular channel is therefore:

3
E =2
Cc 2yC

Example Problem: Determine the Downstream Water
Depth when Affected by Channel Bottom Rise (ex. 7-3,
Prasuhn 1987)

Determine the downstream depth in a horizontal rectangular channel
in which the bottom rises 0.5 ft, if the steady flow discharge is 300 cfs,
the channel width is 12 ft, and the upstream depth is 4 ft.

The discharge per unit width is:

_Q _300ft*/sec
b 121t

= 25cfs/ ft

The critical depth is therefore:

A4 2\
yo=[ ]2 (25¢fs/ ft)2 260t
g 32.2ft/sec

10



The upstream depth is therefore subcritical.

Hy

(a) Specific energy diagram (b) Water surface profile

Figure 7-9 Subcritical transition with upward step.

The upstream specific energy is calculated to be:

9 (25¢fs/ ft)’
Hy=Y,+——=4ft+
o= Y 2gy? 2(32.2 ft /sec2X4 ft)’

=4.61ft

and the corresponding downstream specific energy is:
2

q

Hp,=Hy-Az=Y, +Ky22

(25cfs/ ft)°

Ho, = 4.61ft-05ft=4.11ft =y, +
2 Y2 22 ft/sec?y?

From the subcritical position on the specific energy
diagram, the depth and the water surface elevation will
both decrease downstream over the “bump” in the
channel bottom. Therefore, y, must be greater than y,
and less than y,-Az:

269ft<y,<3.5ft
Solving the equation by iteration within this range results

in the solution of y, = 3.09 ft. The trial solutions can be
used to draw in the specific energy diagram.

In-Class Problem

Determine the downstream depth in a
horizontal rectangular channel in which the
bottom rises 0.75 ft, if the steady flow
discharge is 550 cfs, the channel width is
5 ft, and the upstream depth is 6 ft. Also
draw the specific energy diagram for this
problem.

11



“Choke”

What happens when Az is increased to a greater and greater value
under subcritical conditions? As Az increases, H,, must also continue to
decrease. Therefore, y, decreases as well. The limit is reached for
subcritical flow when y, equals the critical depth at which point the
transition becomes a “choke.” A further increase in Az results in the
impossible situation where H,;, is less than H,,;, (there would be no
positive solution to H,,): the upstream flow has insufficient energy to
pass through the transition at the specified discharge.

The flow will not cease, but will adjust itself to either a lower discharge or
an increase in specific energy. The flow will likely not change due to
upstream flow sources. The upstream flow will increase both its
upstream depth and specific energy by means of a gentle swell or a
series of small waves that travel upstream. The new upstream depth will
be such that the flow can just pass the transition and y, will equal y,, and
Heo Will equal H - Hoq Will exceed H, i by the value of Az . This
transition is called a choke since the critical depth prevails regardless of
the increase in upstream energy.

During supercritical flow conditions, the flow behavior is
different as A z increases. A choke occurs when the
minimum specific energy is reached. However, when
additional A z occurs, a surge (wall of water) moves
upstream. When equilibrium is reached, the supercritical
flow will have been replaced by the identical subcritical flow
discussed above, and the transition will continue to act as a
choke.

(summarized from Prasuhn 1987)
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