
1

M6a: Open Channel Flow 
(Manning’s Equation, Partially 

Flowing Pipes, and Specific 
Energy)

Robert Pitt
University of Alabama

and 
Shirley Clark

Penn State - Harrisburg

Chin 2006; Figure 3.1

Steady Non-Uniform Flow in an Open Channel

Continuity Equation: V1A1 = V2A2

Chin 2006; Figure 3.2

Steady, Non-Uniform Flow in an Open Channel

The momentum equation can be used to derive the expression for 
shear stress:

fo RSγτ =
γ = specific weight of water (62.4 lbs/ft3)
R = hydraulic radius (ft)
Sf = hydraulic slope (ft/ft) (slope of the energy grade line, or the friction slope) 

Manning Coefficients for Open Channels (Table 4.1, Chin 2000)

SI units (m/s; m)

U.S. Customary units (ft/sec; ft)

Only valid for hydraulically rough flow, when:
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Where Sf is the slope of the 
energy grade line (friction 
slope). If the channel slope is 
used, then implies uniform 
flow, which is rare.
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Manning’s Equation
Example:
• Determine the flow rate in a rectangular concrete channel 

with a width of 3 m and a HGL slope of 0.001 m/m when 
the depth of flow is 1.5 m. Assume n = 0.014.

Given: n = 0.014 (concrete channel)
L = 3 m  (width of channel)
w = 1.5 m  (depth of flow)
sf = 0.001 m/m

Manning’s Equation

• Use the Manning's equation:

Need A (cross-sectional area of flow):
A = Lw
Substituting:

A = (3 m)(1.5 m)
A = 4.5 m2
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Manning’s Equation

• Need R (hydraulic radius):
R = A/P

• Need P, the wetted perimeter (noted on drawing by 
thicker lines).

P = L + 2w
Substituting:

P = (3 m) + 2(1.5 m)
P = 6 m

Substituting into equation for hydraulic radius:
R = A/P
R = (4.5 m2)/(6 m)
R = 0.75 m

Manning’s Equation

• Substituting into Manning's equation:
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Manning’s Equation

Example:
• Given a V-shaped channel with a HGL slope of 0.001, a 

top width of 10 feet, and a depth of 5 feet, determine the 
velocity of flow using the Manning’s equation. Find the 
discharge in both ft3/sec (cfs) and m3/sec (cms).

Manning’s Equation

Substituting:
R = (25 ft2)/14.14 ft
R = 1.77 ft

Assume that the channel is concrete-lined with a 
Manning’s n of 0.015.

Q = 114.9 cfs = 115 ft3/sec(0.3048 m/ft)3 = 32.5 
m3/sec
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Manning’s Equation

Example:
• Find the dimensions of a rectangular concrete channel to 

carry a flow of 150 m3/sec, with a HGL slope of 0.015 and 
a mean velocity of 10.2 m/sec.

Given:
Q = 150 m3/sec
V = 10.2 m/sec
Sf = 0.015
Assume: Manning’s n = 0.013 (concrete channel)

Manning’s Equation

• Have everything needed to solve Manning’s 
equation for the hydraulic radius, R:
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Manning’s Equation
By definition, R = cross-sectional area of flow/wetted perimeter

By the Continuity Equation:
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Manning’s Equation
• Have two equations and two unknowns:

Two possible solutions to quadratic (both are correct):
Base = 2.9 m Depth of Flow = 5.04 m
Base = 10.1 m Depth of Flow = 1.46 m
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Figure 5-8 (Chow 1959) can be used to significantly shorten the 
calculation effort for the design of channels. This figure is used to 
calculate the normal depth (y) of a channel based on the channel
side slopes and known flow and channel characteristics, using 
the Manning’s equation in the following form:
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Initial channel characteristics that must be know include: z (the side 
slope), and b (the channel bottom width, assuming a trapezoid). It is 
easy to examine several different channel options (z and b) by 
calculating the normal depth (y) for a given peak discharge rate, 
channel slope, and roughness. The most practical channel can then be 
selected from the alternatives. 
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Composite Manning’s n Estimate, Example 3.2 (Chin 2006)

A floodplain (next slide) can be divided into seven sections as shown 
below. Use the various formula in the table to estimate the composite 
roughness value for this channel.

Floodplain showing seven separate sections corresponding to 
different values of n.

Figure 3.5, Chin 2006

Each section has the following geometric characteristics:

These values are used with the prior equations to result in the 
following estimates for Manning’s n: 

The estimates of the composite n values can vary considerably, 
resulting in similar differences in predicted discharges.
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As shown earlier, the Manning’s equation can 
also be also used to predict flows in pipes. 
Drainage systems are typically designed as 
open channel flows in circular pipes, although 
other cross-sectional shapes are used. 

Charts or tables can be used to help predict the 
flow conditions in these systems when the 
pipes are not flowing full.

Sewers Flowing Partly Full

From: Metcalf 
and Eddy, Inc. 
and George 
Tchobanoglous. 
Wastewater 
Engineering: 
Collection and 
Pumping of 
Wastewater. 
McGraw-Hill, 
Inc. 1981.

Sewers Flowing Partly Full

From: Metcalf and Eddy, Inc. and George 
Tchobanoglous. Wastewater Engineering: 
Collection and Pumping of Wastewater. 
McGraw-Hill, Inc. 1981.

Sewers Flowing Partly Full

Example:
• Determine the depth of flow and velocity in a sewer 

with a diameter of 300 mm having a HGL slope of 
0.005 m/m with an n value of 0.015 when 
discharging 0.01 m3/sec.

Given: D = 300 mm
Sf = 0.005 m/m
n = 0.015
Q = 0.01 m3/sec
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Sewers Flowing Partly Full
• Use the modified Manning’s equation for 

partly full sewers:
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Sewers Flowing Partly Full

• Using Table 2-5 (equation in terms of 
diameter of pipe):

Close to K′ = 0.0534
Therefore, d/D = 0.28

• Substituting:
d/(0.3 m) = 0.28
Depth of flow, d = 0.084 m

Sewers Flowing Partly Full

• To calculate velocity at depth of water of 
84 mm, need to use continuity equation:

Q = VA

• Using Manning’s partial flow diagram 
(assuming a constant n):

At d/D = 0.28

Sewers Flowing Partly Full

From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: 
Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981.

d/D = 0.28

A/Afull = 0.22
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Sewers Flowing Partly Full

• Using Manning’s partial flow diagram 
(assuming a constant n):

At d/D = 0.28, A/Afull = 0.22

• Calculate Afull.
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Sewers Flowing Partly Full

• Substituting:

• Substituting into the continuity equation:
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In-Class Problem (Partially 
Flowing Sewer)

• Determine the depth of flow and velocity in a 
sewer with a diameter of 600 mm having a HGL 
slope of 0.005 m/m with an n value of 0.013 
when discharging 0.055 m3/sec.
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Prasuhn 1987

Remember the problem having two “correct” answers:

The specific energy diagram is used to determine the most likely water depth.

Typical Specific Energy Diagram 
(Figure 3.6, Chin 2006)
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If water depth is deeper than the 
critical depth (yc), then the flow is 
subcritical.

If the water depth is shallower than 
the critical depth, then the flow is 
supercritical.

When the water depth is close to 
critical, small changes in specific 
energy results in large depth 
changes, resulting in unstable 
and excessive wave action. Fr 
should be <0.86 or >1.13 to 
prevent this.

Prasuhn 1987

In the subcritical zone, the 
water depth component is 
much larger than the velocity 
head

In the supercritical 
zone, the velocity head 
component is much 
larger than the water 
depth. 
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Prasuhn 1987

In this example, the upstream flow is subcritical (deeper than the critical 
depth). When the water approaches an upward step, the specific energy 
calculation results in two possible water depth solutions. The correct 
downstream water depth solution is on the same limb of the specific energy 
diagram as the upstream water depth. In this case, the flow is still subcritical, 
although the water depth actually decreases (but it cannot pass through the 
critical depth value).

Prasuhn 1987

In this example, the upstream flow is supercritical (shallower than the critical 
depth). When the water approaches an upward step, the specific energy 
calculation results in two possible water depth solutions. The correct 
downstream water depth solution is on the same limb of the specific energy 
diagram as the upstream water depth. In this case, the flow is still 
supercritical: the water depth increases (but it cannot pass through the 
critical depth value).

In a rectangular channel, the critical depth can be easily calculated 
using a unit width flow rate:
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Where b is the width of the rectangular channel

The critical flow depth can then be calculated as:

and the minimum specific energy in a rectangular channel is therefore:

Example Problem: Determine the Downstream Water 
Depth when Affected by Channel Bottom Rise (ex. 7-3, 
Prasuhn 1987)

Determine the downstream depth in a horizontal rectangular channel 
in which the bottom rises 0.5 ft, if the steady flow discharge is 300 cfs, 
the channel width is 12 ft, and the upstream depth is 4 ft.
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The critical depth is therefore:
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The upstream depth is therefore subcritical.
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The upstream specific energy is calculated to be:

and the corresponding downstream specific energy is:

From the subcritical position on the specific energy 
diagram, the depth and the water surface elevation will 
both decrease downstream over the “bump” in the 
channel bottom. Therefore, y2 must be greater than yc
and less than y1-∆z:

2.69 ft < y2 < 3.5 ft

Solving the equation by iteration within this range results 
in the solution of y2 = 3.09 ft. The trial solutions can be 
used to draw in the specific energy diagram.

In-Class Problem

Determine the downstream depth in a 
horizontal rectangular channel in which the 
bottom rises 0.75 ft, if the steady flow 
discharge is 550 cfs, the channel width is 
5 ft, and the upstream depth is 6 ft. Also 
draw the specific energy diagram for this 
problem.
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“Choke”
What happens when ∆z is increased to a greater and greater value 
under subcritical conditions? As ∆z increases, Ho2 must also continue to 
decrease. Therefore, y2 decreases as well. The limit is reached for 
subcritical flow when y2 equals the critical depth at which point the 
transition becomes a “choke.” A further increase in ∆z results in the 
impossible situation where Ho2 is less than Homin (there would be no 
positive solution to Ho2): the upstream flow has insufficient energy to 
pass through the transition at the specified discharge. 

The flow will not cease, but will adjust itself to either a lower discharge or 
an increase in specific energy. The flow will likely not change due to 
upstream flow sources. The upstream flow will increase both its 
upstream depth and specific energy by means of a gentle swell or a 
series of small waves that travel upstream. The new upstream depth will 
be such that the flow can just pass the transition and y2 will equal yc, and 
Ho2 will equal Homin. Ho1 will exceed Homin by the value of ∆z . This 
transition is called a choke since the critical depth prevails regardless of 
the increase in upstream energy. 

During supercritical flow conditions, the flow behavior is 
different as ∆ z increases. A choke occurs when the 
minimum specific energy is reached. However, when 
additional ∆ z occurs, a surge (wall of water) moves 
upstream. When equilibrium is reached, the supercritical 
flow will have been replaced by the identical subcritical flow 
discussed above, and the transition will continue to act as a 
choke. 

(summarized from Prasuhn 1987)


